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Modeling and damage detection for complex structures

Challenges:

« Component-level damage affects system-level dynamics

 Fast re-analysis is needed to reduce computational cost of
large-scale finite element models

 Cracks create nonlinear dynamics (much harder to tackle)

e Structural health monitoring (SHM) requires system
Information: sensors

Vehicle frame model (developed by Prof. Hulbert, Dr. Ma, Dr. Hahn of the Univ. of Michigan)

Approach:

 Apply component-based methods to assemble system-level
reduced-order models (ROMSs) of damaged structures

 Employ linear approximations of nonlinear (cracked) structural
dynamics

« Combine above into sensor placement / measurement point
selection algorithm
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Reduced Order Models: Overview

B Dynamic analysis of invariant complex structures
» Projection by lower modes of the large-scale eigenvalue problem

Divide and Conquer

Component Mode Synthesis

(CMS) o

Takes more than a day only for the
dynamic structural analysis

B Dynamic analysis of damaged complex structures
» Projection by proper basis of the large-scale eigenvalue problem

» Proper basis can be defined for each damage type: cracks, dents and
other structural variations of complex structures
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Reduced Order Models: Substructuring

» Assemble ROMs of system (e.g., frame) from finite element
analyses of components and subcomponents

= Efficiently predict vibration, loading, stress in critical regions

System Level:
Vehicle Frame

Finite Element Model
of Frame

Component Level:
Left Rail

s e

Subcomponent Level:

Dynamic stress for Rail Sections,
component mode Reinforcement Plates |
(left rail) Reinforcement

- Plates
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Reduced Order Models: CB-CMS
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Reduced Order Models: Parametric Models (PROMS)

e Enable fast re-analysis

« Subcomponent dynamics evaluated
at sampled parameter values

» System-level response expressed
as function of parameter changes

Nominal

- Global PROM (Parametric Reduced Order Models)
= Balmeés: Collected eigenvectors at sampled points in the

parameter space
Problem: Overhead computational cost to get the modal v
matrix to project the FE model Upper

Reinforcement plate

Bound
thickness changes

- CMB-PROM (Component Mode Basis PROM)

= Zhang (2005): Collect fixed interface normal modes and
global interface mode and project the FE model.

Problem: Global analysis not substructural analysis

l Multi-component
- Component PROM —
\- Park (2008): Developed PROM for substructural analysis / PROM (MC'PROM)

Problem: a single design component is tackled
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Reduced Order Models: Static Mode Compensation

Geometrical variations of the structure (dents)
B Lim (2004): used SMC for vibration of turbomachinery

bladed disks for geometrical mistuning using SMC
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Reduced Order Models: Nonlinear Dynamics: Cracks

Cracks in the structure

B Crack surfaces open and close during
vibration: nonlinear vibration

B Hybrid Frequency / Time Domain
method (Poudou 2003)

B Bilinear Frequency Approximation
(Shaw 1983): no mode information

penetration no penetration

— Iﬁ Resonant frequencies
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Reduced Order Models: Bilinear Frequency Approximation

Exact for nonlinear vibration frequency of a piecewise linear oscillator

AAA
zo = 0 . vy
. B TH__
€= <—>|m0 cos wt
kl >
AAAA ko Q Q
—& FNW— z <0
J | ONe)
AN
A
53 E% T W
N {7 — Q0 _‘
Q Q

Single DOF, piecewise linear oscillator

Bilinear Frequency

QUJLLUQ,
Wwp = ——
Wi + W2

= Bilinear frequency approximation (BFA) for multiple DOF (Chati et al., 1997)
» BFA using general 3D finite element model (Saito et al., 2009)
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Reduced Order Models: Bilinear Mode Approximation

Opening mode (I) Sliding mode (ll) Tearing mode (111)
Crack modes

» Manage boundary conditions on the crack: open and closed cases
= Crack open: open boundary condition: DOF on crack surface are free
» Crack closed: sliding boundary condition: free sliding inside crack surface

= Mode approximation: shape of vibration is a linear combination of mode
shapes for open and closed crack cases (dominant coherent structures)

’ Bilinear Mode Approximation (BMA)
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Reduced Order Models: Framework

Analysis Framework

B Divide the global structure into 5O
substructures with or without damage O

Assemble substructures for
M&S of system-level response
under various damage
locations and crack lengths,

\ uncertainties,
design changes

M Apply Craig-Bampton CMS (CB-CMS) for
substructures which do not have any 0c© O
damage or variability

0O O

m Apply MC-PROM for the substructure with
model variations (e.g. uncertainties
(e.g ) h O ‘

B Apply BFA for cracked structure analysis o

Core technologies

B CB-CMS - Efficient framework for
m Multi-Component PROM damage detection and for
W SMC-CMS . structural predictions

B Bilinear Frequency and Mode Approximation
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Example: L-Shape Plate : Dents and Thickness Variations

= |:FEM

~w'M rem Urem T (1"' Jy) K rem Urewm

Force

Apply ROM

Force

DOF for ROM: 980

DOF for FEM: 6150

Dents

Thickness variations

Thickness, Case 2

0.4mm — 0473 mm 0.4 mm — 0.435 mm

Thickness, Case 1

Substructure

1
6

0.03 (structural damping)

y:

04mm — 0422 mm 0.4 mm — 0.491 mm

U : physical coordinates
d : modal coordinates

0.4mm — 0493 mm 0.4 mm — 0.481 mm

7
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Results: L-Shape Plate: Forced Response
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Crack length (%)

Crack length (%)
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Results: Vehicle Frame : Dents and Thickness Variations

L _rear
Damage Scenario
Each reinforcement frame has thickness variation
Engine cradle has a dent
Substructure Thickness, casel Thickness, case2
L rear 3.0378 mm — 4.6268 mm 3.0378 mm — 5.5788 mm

L_front 3.0378 mm — 5.3838 mm 3.0378 mm — 4.0908 mm

TPyl A CCLI—1Lr— . o | i A A L Lol 1
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Results: Vehicle Frame: Forced Response

Response point : 3692672

3692672
Full order model ROM
System DOF 119808 oL 2420
Initial Analysis time 60125.216 (sec.) =R 21955.959 (sec.)
Reanalysis time 60125.216 (sec.) —1> 595.361 (sec.)
X—
100
3.5 \ ‘ ‘ : : ‘ ‘ ‘ 3.5;
......... Healthy weeeenee Poglthy
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Results: Vehicle Frame: Dents, Cracks and Thickness Variations

L _rear
L_front
v
Crack length varying
along the surface
W 88.89%
11.11%
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Results: Vehicle Frame: Free Response
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Bilinear Mode Approximation (BMA)

Bilinear Mode Approximation (BMA)

health
ety — ;= lameoed — D, M. = M s 0
BL,i q)heajthy BL,i (I)ac _ BL O M closed
i closed,i CMS

Modal assurance criterion (MAC): sensitive mode shapes
(@) Mg (g

(@) M (@) || (@8m) M,

MAC, =

healthy acl ac2
— Y (I)open (I)open — healthy damaged1 damaged 2
D, = =P () () :
BL i) healthy (I)acl (I)ac2 BL BL BL
closed closed

UNCLASSIFIED: Distribution A. Approved for public release 19



Sensor Placement Algorithm for Cracked Structure

General sensor placement algorithm: EIDV

- Effective independence distribution vector (EIDV) [Kammer, 1991; Penny et al., 1994]
- From the real modal matrix, the EIDV algorithm is executed.

Problem

- The augmented BL modal matrix @, can be linearly dependent
Solution

- Use left singular vector U of @, within the criteria to EIDV
®, :(MxN) M : Number of candidate measurement DOF, N : Number of mode

- Maximum singular value: 7,

(o, 0 0O L O . :
Minimum singular value: o,
1htopthcoumn |0 o0, O L O : :
| |0 0 g O 0] . Criteria:
M M M L Vv, L _
o =llu Llu M M MO O ML M g, is larger than 0.01% of the
BL |1 Mo o0 0 L o, maximum singular value g;
M M M L V, L
AN -l0 0 0 L 0] " - Make @, for EIDV
M M MO 0 MM M
(0 0 0L O Qp=|U, L U
MM M|
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Algorithm for modified EIDV with Left Singular Vector

- Calculate the mode shape for the healthy and damaged structures
for open and closed cases in reduced order domain.

- Construct the BL modal matrix for the healthy and damaged
structures.

- Find the sensitive mode shapes (and their frequencies) by using the
generalized MAC matrix.

- Make bilinear augmented modal matrix ®g by the sensitive mode
from the modified MAC matrix.

- Obtain the left singular vector U of ®g and make ®, which is
consist of left singular from U, to U, based on the criteria
M M M

D, =|U, L U,

M M M

- Calculate Fisher information matrix given by A =®sp ®gp.

- Calculate effective independence distribution vector (EIDV), the
diagonal of E=o A ®,.
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Example: Cracked plate

55 candidate
Measurement points

Magnitude of MAC value

Mode for 20% cracked structure 1
° Mode for healthy structure

20% cracked structure

UNCLASSIFIED: Distribution A. Approved for public release

1. Calculate the mode shapes for open
and closed states at each crack length

2. Construct the BL modal matrix for the
healthy and damaged structures

3. Find the sensitive mode shapes by
using the generalized MAC matrix

©c o 9
N o ™

Magnitude of MAC value
o
N

o

Mode for 40% cracked structure 1
° Mode for healthy structure

40% cracked structure

22



SVD ratio versus number of measurement locations

Assessing EIDV using SVD ratio

250

200 -

150 -

SVD ratio

100 -

Assessing EIDV using SVD ratio

50 -

0! D e Y Ve Ve 1 1
10 15 20 25 30 35 40 45 50
Number of measurement locations

50 55

Number of measurement locations

UNCLASSIFIED: Distribution A. Approved for public release 23



Results: Measurement point selection

15 selected

55 candidate o P
measurement points

measurement points

Apply modified EIDV using bilinear modal
matrix assembled with sensitive modes
to select measurement points

e T T T (15 points in this example)

Find the sensitive mode shapes by using
the generalized MAC matrix

© o o
N o o

Magnitude of MAC value

o
N

o

Mode for 40% cracked structure 1
° Mode for healthy structure

4 to 9" mode shapes are sensitive for healthy and 40% cracked structure
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Summary

Modeling and simulation of damaged structures
 Reduced-order models for dents, thickness changes, etc.
 Fast reanalysis methods
« Bilinear approximations for predicting nonlinear effects of cracks

Sensor placement (measurement point selection) method
« Bilinear mode approximation (BMA)
 EIDV-based algorithm for point selection

Future work
 Applications to SHM of complex structures, joining/fastening
« Applications to design for reliability, observability
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